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a b s t r a c t

In this paper, a robust adaptive boundary control for an axially moving string that

shows nonlinear behavior resulting from spatially varying tension is investigated.

A hydraulic actuator equipped with a damper is used as the control actuator at the right

boundary of the string. The Lyapunov redesign method is employed to derive a robust

parameters (mass per unit length of string, lumped mass of hydraulic actuator, and

damping coefficient of damper) and an unknown boundary disturbance. The uniform

asymptotic stability (when the three parameters are all unknown), the exponential

stability (when they are known), and the uniform ultimate boundedness (with a

bounded boundary disturbance) of the closed loop system are investigated. The

convergence of the parameter estimates to the true values is shown. Numerical

simulations are performed to demonstrate the effectiveness of the proposed robust

adaptive boundary control.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In mechanical engineering, many operations of components such as power-transmission belts, chain drives, high-speed
magnetic tapes, plastic-films, and paper-sheets under processing as well as steel-strips are modeled as axially moving
systems. For these systems, the mechanical vibrations (particularly in the transverse direction) of the moving part become
the main quality- and productivity-limiting factor, especially for high-speed precision machine systems. Therefore,
reduction of transverse vibrations in axially moving systems has become an important research area. In efforts to solve the
vibration problem, many researchers have investigated the application of control actions at a system’s left or right
boundary (a measure known as boundary control), the provision of control inputs through a supporting roller being more
cost-effective than the addition of an extra actuator in the middle of a system.

In recent years, there have been many papers published on dynamic analysis [1–6] and control [7–32] of axially moving
systems as well as flexible structure systems. Notably, a number of creative control techniques by which axially moving
systems are stabilized at their boundaries have been addressed [8–32]. Such approaches primarily pursue point(s) control
(not distributed control). Control laws to reduce the total mechanical energy to zero can be derived using a Lyapunov
function candidate, which is equivalent to the total mechanical energy of a moving system. These control laws use
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measured signals of the transverse displacement and the time-rate of the slope of the moving material at the boundary,
obtainable by the addition of laser sensors at the boundary point. Therefore, in so far as actuators and sensors can be easily
assembled at the boundary, the boundary control method can provide a practical control solution for axially moving
systems. Boundary control can be implemented in one of two ways: active control [8–29] or, with the proper damping
mechanism, passive control [30–32] (or semi-active control). Alternatively, distributed control [7] might yield better
control performance, though it is difficult to implement the algorithm because distributed control forces and feedback
signals are required. Essentially, the boundary control method is more advantageous than the distributed control method.

A number of researchers have investigated adaptive and intelligent boundary controls for axially moving systems as
well as flexible structure systems. Queiroz et al. [9] proposed an adaptive control law for an axially moving string system in
which two control inputs are located in the middle of the moving string to reduce the vibration of the controlled span. Fung
et al. [30,31] developed a boundary control scheme for an axially moving string system in which adaptive boundary control
laws are employed on a mass–damper–spring (MDS) mechanism to suppress vibrations and to update online estimation
values of unknown parameters. Li and Rahn [10] and Li et al. [13] introduced an adaptive isolation scheme for axially
moving systems, which are divided into two spans by a transverse force actuator, to reduce the transverse vibration of the
controlled span to zero asymptotically under bounded disturbances in the uncontrolled span. Using an MDS system to
provide an actuation force, Chao and Lai [32] presented intelligent control schemes, namely fuzzy sliding-mode control and
fuzzy neutral network control, for reduction of transverse vibration. Yang et al. [14] introduced a method of robust
adaptive boundary control of an axially moving string under spatiotemporally varying tension and unknown boundary
disturbance. They assumed that some varying-tension-related constants, the lower bound, the upper bound and the
bounds of the time-derivate, are a priori known. Adaptation laws were derived to estimate the values of the mass per unit
length of the moving string and unknown disturbance resulting from the uncontrolled span. Uniform stability was proven
by application of the semigroup theory. Chen and Zhang [19] designed an adaptive control law for a tensioner, which can
be considered as a boundary control actuator, to reduce the transverse vibration of an axially moving string. They assumed
that the values of the tension of the axially moving string and the parameters of the tensioner, which are the mass moment
of inertia and the rotational stiffness, are unknown. In this case, the unknown system parameters appear only in the
ordinary differential equation describing the motion of the tensioner. In this paper, starting from the fact that
the performance of adaptive boundary control depends on the estimation of the parameter values of the string and the
actuator, we developed a robust adaptive boundary control scheme for an axially moving string that can compensate for
the uncertainties of both the string itself and the boundary actuator under spatially varying tension and boundary
disturbance.

In this paper, the considered plant (an axially moving string system) for control is coupled partial and ordinary
differential equations (PDE and ODE), where the nonlinear PDE represents the string dynamics and the ODE the actuator
dynamics including a hydraulic actuator and a damper (Fig. 1). In practice, axially moving systems have varying tensions
due to the strain resulting from the displacement of the string, the eccentricity of a support roll, external disturbances, and
other factors [12,14,20,22,33]. This again leads to a change in the dynamic response of a moving string. Therefore, the
control law has to be designed with consideration for the variations of the tension. The boundary control scheme discussed
in this paper can be described as follows. The control law generates a required signal for the hydraulic actuator. The control
force supplied by the hydraulic actuator is applied to the string at the right boundary, and the estimation of the unknown
parameter values or the adaptation of changing values in the controller as well as in the plant, as well as the unknown
bound of the boundary disturbance, are updated online. Collocation of the sensor and actuator at the right boundary is
carried out. The axially moving string system under the proposed control law is a closed-loop system in that the control
signal uses the transverse displacement and slope information of the string at the right boundary.
Fig. 1. Schematic of proposed boundary control of an axially moving string.
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In this paper, a robust adaptive (and active) control problem for an axially moving string, approached using a boundary
control method, was investigated. Nonlinear string and spatially varying tension were considered in the dynamic model.
Using the Lyapunov redesign method, a robust adaptive boundary control was derived to regulate the transverse vibration
of the axially moving string to zero. Included in the control were adaptation laws for online updating of the unknown
parameter values (the mass per unit length of the string, the lumped mass of the hydraulic actuator, and the damping
coefficient of the damper) and the unknown bound of the boundary disturbance. Numerical simulations using a finite
difference scheme were performed for four cases (i.e., without control; with closed-loop control and exactly known system
parameter values; with closed-loop control and estimated system parameter values; and with closed-loop control and
estimated system parameter values as well as the estimated bound of the unknown boundary disturbance). Comparing the
simulation results for these four cases, we show that the convergence speed of the transverse vibration of the controlled
axially moving string is significantly improved. Compared with the work in Ref. [14], the improvements were made as
follows. First, the assumption of uncertainties is more general, because along with the boundary disturbance, the three
unknown system parameters are revealed (whereas only the mass per unit length of the string and the boundary
disturbance were revealed in Ref. [14]). Second, the spatially varying tension is considered explicitly for robust control
design. Third, the proposed robust adaptive control law improves the control performance, as shown in the computer
simulation results.

2. Problem formulation

Fig. 1 shows a schematic of the axially moving string system with a control mechanism located at the right boundary.
The control mechanism includes a hydraulic actuator, a damper, and touch rolls. The left boundary is fixed in the sense that
the movement of the string in the vertical direction is restricted. Conversely, at the right boundary, the control mechanism
allows for transverse (vertical) movement of the string in accordance with the dynamics of the hydraulic actuator.

Let t be the time, x the spatial coordinate along the longitude of motion, w(x,t) the transverse displacement at the spatial
coordinate x and time t, l the distance between two supporting rolls, r the mass per unit length of the string, cv the viscous
damping coefficient of the string, and v the traveling speed of the string (assumed constant). Moreover, let ma be the
lumped mass of the hydraulic actuator and ca be the damping coefficient of the actuator. The variable T(x,t) describes
the spatially varying string tension, and d(t) denotes the unknown disturbance force exerted on the actuator due to the
transverse vibration of the exterior-span of the string where control is not focused. Finally, the control force fa(t) supplied
from the hydraulic actuator of the control mechanism is applied to the touch rolls to suppress the transverse vibrations.

The governing equation and boundary conditions of the closed-loop system in Fig. 1 are given as [14]

rwttðx,tÞþ2rvwxtðx,tÞþrv2wxxðx,tÞ�ðTðx,tÞwxðx,tÞÞxþcvðwtðx,tÞþvwxðx,tÞÞ ¼ 0, 0rxr l; (1)

wðx,0Þ ¼w0ðxÞ, wtðx,0Þ ¼wt0ðxÞ, (2)

wð0,tÞ ¼ 0, (3)

and

faðtÞ ¼mawttðl,tÞþðca�rvÞwtðl,tÞþðTðl,tÞ�rv2Þwxðl,tÞþdðtÞ, (4)

where (U)t=q(U)/qt, (U)tt=q2(U)/qt2, (U)xt=q2(U)/qxqt, (U)x=q(U)/qx, and (U)xx= q2(U)/qx2 denote the partial derivatives with
respective to t and x, respectively. Eq. (1) governs the transverse displacement w(x,t) of the axially moving string. The
initial conditions are given by Eq. (2), and the boundary conditions are provided by Eqs. (3)–(4). Eq. (4) also describes the
dynamics of the hydraulic actuator in compliance with the external force fa(t), which is specified to dissipate the vibration
energy. As shown in Eqs. (1)–(4), the control mechanism attached to the right boundary of the string is coupled to the
string system. Therefore, to achieve the stability of the coupled system (1)–(4), the convergence of the motion of the
hydraulic actuator to zero should also be satisfied. In this paper, the tension T(x,t) is presented in the formula

Tðx,tÞ ¼ T0þnðxÞw2
x ðx,tÞ, (5)

where T0 is the tension of the undisturbed string, and the scalar function n(x) is positive for all xA[0,l] (see Table 1 and
Refs. [12,33]). T0 is known because the uniformity of the string is assumed, and is sufficiently large. For notational
convenience, instead of wx(x,t) and wt(x,t), wx and wt will be used, with similar abbreviations employed subsequently.

Assumption 1. The function n(x) and its partial derivative nx(x) are uncertain, but their bounds (constant lower and upper
bounds) are known, and for all xA[0,l],

nminrnðxÞrnmax, (6)

nx,minrnxðxÞrnx,max: (7)

In Section 4, nðxÞ ¼ EA=2þ300sinðpx=lÞ and Tðx,tÞ ¼ 1000þnðxÞw2
x ðx,tÞ will be used.



Table 1
System parameter values used in numerical simulation.

Parameter values in plant Values

Mass per unit length, r 2.7 kg/m

Cross-section area, A 1.4�0.002 m2

Elastic modulus, E 1.3�107 N/m2

Traveling speed, v 2 m/s

Distance between two pulleys, l 20 m

Viscous damping coefficient, cv 0.001 N m2s

Lump mass of hydraulic actuator, ma 10 kg

Damping coefficient of actuator, ca 0.25 N s/m

Spatially varying string tension, T(x,t) 1000þðEA=2þ300sinðpx=lÞÞw2
x ðx,tÞN

Boundary disturbance, d(t) 50sinð20ptÞN
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Assumption 2. The disturbance force at the right boundary, d(t), is unknown but is bounded by an unknown positive
constant md (this unknown bound will be estimated); that is,

9dðtÞ9rmd: (8)

To achieve the control objective, the vibration energy of the axially moving string should be regulated such that it decays
to zero. This decay requires the existence of a solution such that w(x,t)-0 as t-N. In the case of varying tension, the
transverse displacement of the string, even with viscous damping, might not go to zero without control (see Eq. (15) and
the discussions in Ref. [14]). The varying tension due to the eccentricity of a roll or from the span of the string where
control is not focused can add energy to the span of the string where control is focused. Therefore, the proposed control
method should be able to handle such an effect. The solution to this problem is provided in Eqs. (22)–(28), where the
boundary control force fa(t) includes terms that eliminate the effects of the varying tension.

In implementing the boundary control algorithm, the actuator displacement w(l,t) and the slope of the string wx(l,t) can
be measured by adding laser sensors and an encoder at the actuator [9,10,13]. The actuator velocity wt(l,t), the actuator
acceleration wtt(l,t), and the time-rate of the slope of the string wxt(l,t) can then be obtained through the backward
differencing of such signals. In this study, the length of the string l and the traveling speed of the string v were assumed to
be known, whereas there is no exact knowledge of the values of the other system parameters including the mass per unit
length of the string r, the lumped mass of the hydraulic actuator ma, and the damping coefficient of the damper ca.
Therefore, estimation laws were employed to account for the uncertainties associated with the unknown parameters and
the unknown boundary disturbance.

3. Control formulation

The control objective is to stabilize the axially moving string in the presence of the unknown system parameters (i.e.,
the mass per unit length, the lumped mass of the hydraulic actuator, and the damping coefficient of the damper) and the
unknown disturbance force at the right boundary. To achieve robust stability of the closed-loop system, a robust adaptive
boundary control with adaptation laws is derived using the Lyapunov redesign method. Let

h¼ r ma ca

h iT
(9)

be the unknown system parameter vector, and

ĥðtÞ ¼ r̂ðtÞ m̂aðtÞ ĉaðtÞ
h iT

(10)

be the estimate vector of the vector h. The parameter error vector u(t) is defined as

uðtÞ ¼ ĥðtÞ�h: (11)

Similarly, for estimation of the bound value of the boundary disturbance, the error value is given as

~mdðtÞ ¼ m̂dðtÞ�md, (12)

where m̂dðtÞ is the estimated value of md. Based on the total mechanical energy of the axially moving string, a function

VðtÞ ¼ aV0ðtÞþ2

Z l

0
rxbðxÞwxðwtþvwxÞdxþ

1

2ld

~m2
dðtÞþ

1

2
uTðtÞK�1uðtÞ (13)

is introduced, where a is a positive real constant, b(x) is a positive scalar function strictly increasing for all xA[0,l], ld is a
positive adaptation gain for disturbance estimation, and K is a positive definite matrix such as

K¼ diag l1 l2 l3
� �

, (14)
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where li (i=1, 2, 3) are positive adaptation gains. Finally, V0(t) is defined as

V0ðtÞ ¼
1

2

Z l

0
rðwtþvwxÞ

2 dxþ
1

2

Z l

0
T0w2

x dxþ
1

4

Z l

0
nðxÞw4

x dxþ
1

2
ma½wtðl,tÞþðvþ2bðlÞl=aÞwxðl,tÞ�

2: (15)

Eq. (13) can be rewritten as

VðtÞ ¼ a 1

2

Z l

0
rðwtþvwxÞ

2 dxþ
1

2

Z l

0
T0w2

x dxþ
1

4

Z l

0
nðxÞw4

x dxþ
1

2
ma½wtðl,tÞþðvþ2bðlÞl=aÞwxðl,tÞ�

2

( )

þ

Z l

0
rxbðxÞðwxþðwtþvwxÞÞ

2 dx�

Z l

0
rxbðxÞw2

x dx�

Z l

0
rxbðxÞðwtþvwxÞ

2 dxþ
1

2ld

~m2
dðtÞþ

1

2
uTðtÞK�1uðtÞ:

(16)

From Eq. (16), V(t) will be a positive definite function if the conditions

2bðlÞloa, (17)

roT0 (18)

are satisfied. Under conditions (17) and (18), V(t) given by Eq. (13) becomes a Lyapunov function candidate. The time
derivative of V(t) is derived as

_V ðtÞ ¼ a _V 0ðtÞþ
d

dt
2

Z l

0
rxbðxÞwxðwtþvwxÞdx

" #
þ ~mdðtÞ

_~mdðtÞ=ldþuTðtÞK�1 _uðtÞ

¼ a _V 0ðtÞþr½xbðxÞðwtþvwxÞ
2
�l0�r

Z l

0
ðbðxÞþxbxðxÞÞðwtþvwxÞ

2 dx

þ2

Z l

0
xbðxÞwxððTwxÞx�cvðwtþvwxÞÞdxþ ~mdðtÞ

_~mdðtÞ=ldþuTðtÞK�1 _uðtÞ, (19)

where _V 0ðtÞ is given as

_V 0 ¼�cv

Z l

0
ðwtþvwxÞ

2 dxþ

Z l

0
vnðxÞw3

x wxx dxþ
1

2

Z l

0
vnxðxÞw

4
x dx

�vTð0,tÞw2
x ð0,tÞþvTðl,tÞw2

x ðl,tÞþTðl,tÞwtðl,tÞwxðl,tÞ

þ½faðtÞ�ðca�rvÞwtðl,tÞþrv2wxðl,tÞ�Tðl,tÞwxðl,tÞþmaðvþ2bðlÞl=aÞwxtðl,tÞ�

�½wtðl,tÞþðvþ2bðlÞl=aÞwxðl,tÞ��dðtÞ½wtðl,tÞþðavþ2bðlÞl=aÞwxðl,tÞ�: (20)

Using the inequality 2abrs a2+b2/s for 8s40, the following inequality is obtained:

2

Z l

0
xwxðwtþvwxÞdxr ls

Z l

0
w2

x dxþ
l

s

Z l

0
ðwtþvwxÞ

2 dx: (21)

Using Eq. (21), the time derivative of V(t) is then evaluated as follows:

_V ðtÞr�fðtÞþ½avþ2bðlÞl�nðlÞw4
x ðl,tÞ=4þaTðl,tÞwtðl,tÞwxðl,tÞ

þ½avþbðlÞl�Tðl,tÞw2
x ðl,tÞþbðlÞrl½wtðl,tÞþvwxðl,tÞ�

2

�½awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ�Tðl,tÞwxðl,tÞþ½faðtÞ�ðca�rvÞwtðl,tÞ

þrv2wxðl,tÞþmaðvþ2bðlÞl=aÞwxtðl,tÞ� � ½awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ�

�dðtÞ½awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ�þ ~mdðtÞ
_~mdðtÞ=ldþuTðtÞK�1 _uðtÞ, (22)

where

fðtÞ ¼
Z l

0
½acvþrðbðxÞþxbxðxÞÞ�bðxÞcvl=s�ðwtþvwxÞ

2 dx

þ

Z l

0
½ðbðxÞþxbxðxÞÞT0�cvslbðxÞ�w2

x dx

þ

Z l

0
½3ðbðxÞþxbxðxÞÞnðxÞ=2�ðxbðxÞþav=2ÞnxðxÞ=2�w4

x dx: (23)

To guarantee the uniform stability of the closed-loop system, _V ðtÞr0 should be assured. That is, the control force fa(t)
must be able to eliminate the positive terms in Eq. (22). Therefore, the control law

faðtÞ ¼�BðtÞĥðtÞ�sgnðwðl,tÞÞm̂dðtÞþk1wxðl,tÞ�k2wtðl,tÞ�k3w3
ðl,tÞ (24)

is proposed, where B(t) is a vector including three components such that

BðtÞ ¼ vðwtðl,tÞþvwxðl,tÞÞ ðvþ2bðlÞl=aÞwxtðl,tÞ �wtðl,tÞ
h i

, (25)



Q.C. Nguyen, K.-S. Hong / Journal of Sound and Vibration 329 (2010) 4588–4603 4593
where ki (i=1, 2, 3) are the positive control gains, and wðl,tÞ ¼ awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ. The term �sgnðwðl,tÞÞm̂dðtÞ is
introduced to cope with the unknown boundary disturbance. Note that �dðtÞwðl,tÞrmd9wðl,tÞ9. Substituting Eq. (24) into
Eq. (22) yields

_V ðtÞr�fðtÞþnðlÞ½av�2lbðlÞ�w4
x ðl,tÞ=4�k3½awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ�

4

�½k2a�rlbðlÞ�w2
t ðl,tÞ�½T0lbðlÞ�k1ðavþ2bðlÞlÞ�rlv2bðlÞ�w2

x ðl,tÞ

þ½2bðlÞrlvþk1a�k2ðavþ2bðlÞlÞ�wtðl,tÞwxðl,tÞ

þ ~mdðtÞ½
_~mdðtÞ�9wðl,tÞ9ld�=ldþuTðtÞK�1

½ _uðtÞ�wðl,tÞKBT
ðtÞ�: (26)

To make _V ðtÞ negative semi-definite, adaptation laws for updating ĥðtÞ and m̂dðtÞ in Eq. (23) online are introduced as
follows, respectively:

_̂hðtÞ ¼ �lrĥðtÞþwðl,tÞKBT
ðtÞ, (27)

_̂mdðtÞ ¼ �lrm̂dðtÞþld9wðl,tÞ9, (28)

where the adaptation gain lr is positive. In Eqs. (27) and (28), based on the robust control strategy, the terms �lrĥðtÞ and
�lrm̂dðtÞ are inserted to ensure that the estimated values do not become unbounded [35]. The following six variables are
introduced as

P1 ¼
2

r
acvþrðbðxÞþxbxðxÞÞ�

bðxÞcvl

s

� �
, (29)

P2 ¼
2

T0
ðbðxÞþxbxðxÞÞT0�cvslbðxÞ
� �

, (30)

P3 ¼
4

nðxÞ

3

2
ðbðxÞþxbxðxÞÞnðxÞ�

1

2
ðxbðxÞþav=2ÞnxðxÞ

� �
, (31)

P4 ¼
2a½T0lbðlÞ�k1ðavþ2bðlÞlÞ�rlv2bðlÞ�

maðavþ2bðlÞlÞ2
, (32)

Z¼min minx2½0,l�P1, minx2½0,l�P2,minx2½0,l�P3, P4

� �
, (33)

Zv ¼
Z

aþ2bðlÞl
: (34)

Preliminarily to an analysis of the stability of the closed-loop system, four lemmas are established as follows.

Lemma 1. Consider

VmðtÞ ¼ VðtÞ�
1

2ld

~m2
dðtÞ�

1

2
uTðtÞK�1uðtÞ: (35)

The following relationship is then obtained:

ða�2bðlÞlÞV0ðtÞrVmðtÞr ðaþ2bðlÞlÞV0ðtÞ: (36)

Proof. Using the elementary inequality (a2+b2)/2Zab, the proof of this lemma can easily be verified. &

Remark 1. Lemma 1 states that Vm(t) and V0(t) are equivalent. It should be note that the function V(t) contains two factors:
the transverse vibration of the axially moving string and the uncertainties.

Lemma 2. Given uðx,tÞ : ½0,l� �Rþ-R, if u(0,t)=0,

u2ðx,tÞr l

Z l

0
u2

x ðx,tÞdx, (37)

Z l

0
u2ðx,tÞdxr l2

Z l

0
u2

x ðx,tÞdx: (38)

Proof. See Appendix A. &

Lemma 3. Consider the scalar equation

_pðtÞ ¼�kpðtÞþqðtÞ, (39)

where k is a positive constant. Let 9q(t)9rK. Then, 8pdAR+ , there exists k, q(t), and p(0) such that p(t)Zpd, for all tA[0,N).

Proof. See Appendix B. &
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Lemma 4. (Fung et al. [31]). If uðx,tÞ : ½0,l� �Rþ-R is uniformly bounded, {u(x)}xA[0,l] is equi-uniformly continuous in t, and

lim
t-1

R t
0 :uðtÞ:2

dt exists and is finite, then lim
t-1

:uðtÞ:¼ 0.

Property 1. (Queiroz et al. [34]). If the kinetic energy of the axially moving string given as EkðtÞ ¼
1

2

R l
0 rðwtþvwxÞ

2 dx is

bounded, then wxt is bounded.

Property 2. (Queiroz et al. [34]). If EpðtÞ ¼
1

2

R l
0 T0w2

x dx is bounded, then wx and wxx are bounded.

Theorem 1. Consider the system (1) with the boundary conditions (3) and (4), where the system parameters r, ma, and ca are

unknown and the boundary disturbance d(t) is bounded. The control gains ki (i=1, 2, 3) in Eq. (24) and the adaptation gain lr in

Eqs. (27) and (28) are selected to satisfy the following conditions:

k1o
T0bðlÞl�bðlÞlrv2

avþ2bðlÞl
, (40)

k2 ¼
Zma

a þ
k1aþ2bðlÞlv
vaþ2bðlÞl

, (41)

k34
nðlÞðva�2bðlÞlÞ
4ðvaþ2bðlÞlÞ

, (42)

lr 4Zv: (43)

Then, the boundary control (24) with the adaptation laws (27) and (28) guarantees the robust stability of the closed-loop

system in the sense that all of the signals (i.e., the transverse vibration and the estimation errors) are uniformly and ultimately

bounded.

Proof. The substitution of Eqs. (27) and (28) into Eq. (26) yields

_V ðtÞr�fðtÞþnðlÞ av�2lbðlÞ
� �

w4
x ðl,tÞ=4�k3½awtðl,tÞþðavþ2bðlÞlÞwxðl,tÞ�

4

� k2a�rlbðlÞ
� �

w2
t ðl,tÞ� T0lbðlÞ�k1ðavþ2bðlÞlÞ�rlv2bðlÞ

� �
w2

x ðl,tÞ

þ 2bðlÞlvþk1a�k2ðavþ2bðlÞlÞ
� �

wtðl,tÞwxðl,tÞ

�
lr

2
uTðtÞK�1uðtÞþ

~m2
dðtÞ

ld

" #
þ
lr

2
hK�1hþ

m2
d

ld

" #
: (44)

Since the value of T0 is sufficiently large, there exists sufficiently small s, sufficiently large a, and b(x) such that the

following inequalities hold for all xA[0,l]:

acvþrðbðxÞþxbxðxÞÞ�bðxÞcvl=s40, (45)

ðbðxÞþxbxðxÞÞT0�cvslbðxÞ40, (46)

3ðbðxÞþxbxðxÞÞnðxÞ=2�ðxbðxÞþav=2ÞnxðxÞ=240: (47)

The following inequality is then obtained:

_V ðtÞr�ZV0ðtÞ�
lr

2
uTðtÞK�1uðtÞþ

~m2
dðtÞ

ld

" #
þ
lr

2
hK�1hþ

m2
d

ld

" #
: (48)

Using Lemma 1, Eq. (48) is then rewritten as

_V ðtÞr�ZvVðtÞ�
ðlr�ZvÞ

2
uTðtÞK�1uðtÞþ

~m2
dðtÞ

ld

" #
þ
lr

2
hK�1hþ

m2
d

ld

" #
: (49)

Define a new variable as

oðtÞ ¼ _V ðtÞþZvVðtÞ�e, (50)

where

e¼ lr

2
hK�1hþ

m2
d

ld

" #
: (51)

From Eq. (50), it follows that o(t)r0. Solving Eq. (50) yields

VðtÞ ¼ Vð0Þe�Zvtþ

Z t

0
e�Zvðt�tÞðoðtÞþeÞdt

rVð0Þe�Zvtþ
e
Zv

ð1�e�ZvtÞrVð0Þþ
e
Zv

: (52)
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Eq. (52) implies that

VðtÞrVð0Þe�Zvtþ
e
Zv

ð1�e�ZvtÞ-
e
Zv

(53)

as the time approaches infinity. Utilizing Eqs. (15) and (35)–(37), we obtain

T0

2l
w2r

1

2

Z l

0
T0w2

x dxrV0ðtÞr
VmðtÞ

ða�2bðlÞlÞ
r

VðtÞ

ða�2bðlÞlÞ
: (54)

Therefore, we have that w(x,t) is bounded. From Eqs. (52) to (54), it is concluded that V(t) and V0(t) are uniformly and

ultimately bounded for all tA[0,N). &

Remark 2. Theorem 1 shows that V(t) converges to the ball of radius e/Zv; that is, V(t) can be pushed in an arbitrarily small
boundedness region by setting a sufficiently small lr, a sufficiently large li (i=1, 2, 3), and a sufficiently large ld. Since V0(t)
is bounded, the kinetic energy of the axially moving string Ek(t) is bounded. From Eq. (15), wt(x,t) and wx(x,t) are bounded
and, using Property 1, wxt(x,t) is also bounded. Therefore, Eqs. (27) and (28) imply that ĥðtÞ and m̂dðtÞ are bounded. Finally, it
is shown that all of the signals in the boundary control force (24) are bounded.

Remark 3. From Theorem 1, if the system parameters are known, and if the unknown boundary disturbance is ignored,
that is, uTðtÞK�1uðtÞ ¼ 0 and ~m2

dðtÞ=ld ¼ 0, then VðtÞrVð0Þe�Zvt is obtained. This implies that the exponential stability of the
closed-loop system is achieved with the boundary control law (24) and the known parameters.

When the unknown boundary disturbance is neglected, the function

VsðtÞ ¼ aV0sðtÞþ2

Z l

0
rxbðxÞwxðwtþvwxÞdxþ

1

2
uTðtÞK�1uðtÞ (55)

is considered, where V0s(t) is defined as

V0sðtÞ ¼
1

2

Z l

0
rðwtþvwxÞ

2 dxþ
1

2

Z l

0
T0w2

x dxþ
1

4

Z l

0
nðxÞw4

x dx

þ
1

2
maðwtðl,tÞþvwxðl,tÞÞ

2: (56)

If conditions (17) and (18) hold, then Vs(t) becomes a Lyapunov function candidate. It follows from the proof of
Lemma 1 that

ða�2bðlÞlÞV0sðtÞrVmsðtÞrðaþ2bðlÞlÞV0sðtÞ, (57)

where

VmsðtÞ ¼ VsðtÞ�
1

2
uTðtÞK�1uðtÞ: (58)

The boundary control force is rewritten as

faðtÞ ¼ CðtÞĥðtÞþg1ðwtðl,tÞþvwxðl,tÞÞþg2ðwtðl,tÞþvwxðl,tÞÞ
3, (59)

where the vector C(t) is defined as

CðtÞ ¼ gvwtðl,tÞ=bðlÞl ððbðlÞlþvaÞwttðl,tÞþv2awxtðl,tÞÞ=bðlÞl wtðl,tÞ
h i

, (60)

where g is a positive adaptation gain, and gi (i=1, 2) are positive control gains. The estimate vector ĥðtÞ used in the control
law (59) is obtained by means of the adaptation law

_̂hðtÞ ¼�lrĥðtÞþ ðwtðl,tÞþvwxðl,tÞÞbðlÞl=v
� �

KCT
ðtÞ: (61)

Remark 4. It follows from Lemma 3 that the initial values (r̂ð0Þ, m̂að0Þ, and ĉað0Þ) and the adaptation gains (li (i=1, 2, 3)
and lr) in Eq. (61) can be selected such that the estimation errors ( ~rðtÞ, ~maðtÞ, and ~caðtÞ) are larger or equal to zero, for all
tA[0,N), which is explained as follows. Define a vector XðtÞ ¼ ðwtðl,tÞþvwxðl,tÞÞbðlÞl=v

� �
KCT
ðtÞ including three

components. From the estimation scheme (61), we obtain three estimation equations taking the same form as Eq. (39),
where each component of XðtÞ and the adaptation gain lr play roles as the input q(t) and the gain k in Eq. (39),
respectively. Therefore, we can apply Lemma 3 to each estimation equation obtained from Eq. (61). It follows from the
proof of Lemma 3 that, to make the estimation errors positive, the inequalities (B.2)–(B.4) must be satisfied. In combining
estimation and control, when li (i=1, 2, 3) and lr vary, wt(l,t), wx(l,t), wtt(l,t), and wxt(l,t) also change. Moreover, the bounds
of the components of XðtÞ, which are considered as the bound K of the input q(t) in Lemma 3, can be adjusted by changing
the adaptation gains li (i=1, 2, 3). Therefore, it is possible to search the adaptation gains (li (i=1, 2, 3) and lr) such that
inequalities (B.2) and (B.3) are satisfied. In practice, the ranges (lower and upper bounds) of the unknown parameter values
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can be estimated. Therefore, we can select the initial values (r̂ð0Þ, m̂að0Þ, and ĉað0Þ) such that they are larger than the
unknown parameter values, which implies that inequality (B.4) can be satisfied.

Theorem 2. Consider the system (1) with the boundary conditions (3)–(4), where the boundary disturbance is neglected

(d(t)=0) and the system parameters r, ma, and ca are unknown. The control gains gi (i=1, 2) in Eq. (59) and the adaptation gains

lr and g in Eq. (61) are chosen according to the conditions

g14 ½ðvþ1Þva=bðlÞlþ2vþ1�T0þrgv2ðvþ1Þ=bðlÞl, (62)

g24 ½ð5vþ4Þva=bðlÞlþ10vþ4�nðlÞ=4, (63)

lr 4x=ðaþ2bðlÞlÞ, (64)

g4xma=2r, (65)

where

x¼min minx2½0,l�P1, minx2½0,l�P2, minx2½0,l�P3

� �
: (66)

Then,
(i)
 The boundary control (59) using the adaptation law (61) guarantees the uniform asymptotic convergence of the transverse

vibration of the axially moving string;

(ii)
 If adaptation gains (li (i=1, 2, 3) and lr) and the initial values (r̂ð0Þ, m̂að0Þ and ĉað0Þ) are chosen such that the estimation

errors ~rðtÞ, ~maðtÞ, and ~caðtÞ are larger than or equal to zero for all tA[0,N) (see Remark 4), the estimate values of the

unknown parameters will converge to the true values.
Proof. Consider the Lyapunov function candidate (55). Taking the derivative of Vs(t) and using Eq. (4), we arrive at

_V sðtÞr�fðtÞ�rgðwtðl,tÞþvwxðl,tÞÞ
2
þnðlÞ½avþ2lbðlÞ�w4

x ðl,tÞ=4

þðaþbðlÞl=vÞTðl,tÞwtðl,tÞwxðl,tÞþ½avþ2bðlÞl�Tðl,tÞw2
x ðl,tÞ

þðwtðl,tÞþvwxðl,tÞÞ � fgwtðl,tÞrþ½ðbðlÞl=vþaÞwttðl,tÞþvawxtðl,tÞ�ma

þbðlÞlwtðl,tÞca=v�bðlÞl fa=vgþrgvwxðl,tÞðwtðl,tÞþvwxðl,tÞÞ

þuTðtÞK�1 _uðtÞ: (67)

We have the following inequalities:

ðaþbðlÞl=vÞTðl,tÞwtðl,tÞwxðl,tÞr ða=2þbðlÞl=2vÞ½T0w2
t ðl,tÞþT0w2

x ðl,tÞ

þnðlÞw4
t ðl,tÞ=2þ3nðlÞw4

t ðl,tÞ=2�, (68)

rgvwxðl,tÞðwtðl,tÞþvwxðl,tÞÞrrgðv2þv=2Þw2
x ðl,tÞþrgvw2

t ðl,tÞ=2: (69)

Using Eqs. (59)–(61) and (68)–(69), we obtain

_V sðtÞr�fðtÞ�rgðwtðl,tÞþvwxðl,tÞÞ
2
þ½ð5vþ3Þaþð3=vþ10ÞbðlÞl�nðlÞw4

x ðl,tÞ=4

þðaþbðlÞl=vÞnðlÞw4
t ðl,tÞ=4þ½ðaþbðlÞl=vÞT0=2þgrv=2�w2

t ðl,tÞ

þ½ððvþ1=2Þaþðv=2þ2ÞbðlÞlÞT0þðvþ1=2Þvgr�w2
x ðl,tÞ

�g1bðlÞlðwtðl,tÞþvwxðl,tÞÞ
2=v�g2bðlÞlðwtðl,tÞþvwxðl,tÞÞ

4=v

�lrðuT ðtÞK�1uðtÞÞ=2þlrðhK�1hÞ=2Þ: (70)

If s, a, and b(x) are chosen according to the inequalities (45)–(47), we obtain the inequality

_V sðtÞr�xV0sðtÞ�lrðuTðtÞK�1uðtÞÞ=2þlrðhK�1hÞ=2, (71)

which is negative definite except for the positive constant lrðhK�1hÞ=2. Therefore, the boundedness of Vs(t), V0s(t), w(x,t),

wt(x,t), wx(x,t), and wxt(x,t) can be proved in a manner similar to the case for Theorem 1 (see Eqs. (50)–(54)). Using

Property 2, we obtain the boundedness of wxx(x,t). Applying Eq. (1) and the above statements (the boundedness of wt(x,t),

wx(x,t), wxt(x,t), and wxx(x,t)), we conclude that wtt(x,t) is also bounded. At this point, we have shown that all of the signals

of the boundary control law (59) and the adaptation law (61) are bounded. Then, assertions (i) and (ii) of Theorem 2

are proved as follows:

(i) Eq. (71) is rewritten as

_V sðtÞr�xV0sðtÞþlrh
TK�1ĥðtÞ: (72)
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Define a norm :wðx,tÞ:¼
R l

0 w2ðx,tÞdx
� 	1=2

. Using Lemma 2, the following inequality is obtained:

:w:2
þ: _w:2r2ð1=rþ l2=T0ÞV0sðtÞo1: (73)

Eqs. (72) and (73) yield

_V sðtÞr�xd :w:2
þ: _w:2

n o
þlrh

TK�1ĥðtÞ, (74)

where d=(1/r+ l2/T0)�1/240. Since the inequality
R1

0 lrh
TK�1ĥðtÞdt




 


o1 is confirmed (the proof is given in Appendix C),

Eq. (74) implies that Z 1
0

:w:2
dtr Vsð0Þ�Vsð1Þþ

Z 1
0

lrh
TK�1ĥðtÞdt

� �
=xdo1: (75)

And since

d

dt
:w:2
� 	

¼
d

dt

Z l

0
w2 dx

 !
¼

Z l

0
2w _w dxr

Z l

0
ðw2þ _w2

Þdxr:w:2
þ: _w:2o1 ðfrom Eq: ð73ÞÞ; (76)

{w(x,t)}xA[0,l] is uniformly bounded and equi-uniformly continuous in t. Using Lemma 4, Eq. (76) implies that

lim
t-1

:wðx,tÞ:¼ 0.

(ii) Eq. (71) is rewritten as

_V sðtÞr�xV0sðtÞ�lruTðtÞK�1uðtÞ�lruTðtÞK�1h: (77)

Since lruTðtÞK�1hZ0, the following inequality is obtained:Z 1

0
uTðtÞK�1uðtÞdtrðVsð0Þ�Vsð1ÞÞ=lr o1: (78)

It should be noted that uTðtÞK�1 _uðtÞ is bounded. It follows from Barbalat’s lemma [36, p. 192] that the convergence of

the estimated values to the true values, that is, ĥðtÞ-h as t-N, is assured. &

4. Numerical simulations

The finite difference method is employed to find an approximate solution for the PDE with the initial and boundary
conditions given by Eqs. (1)–(4). The convergence scheme is based on the central (for the string span) and forward/
backward (for the left/right boundary) difference methods [37, Chapter 9]. The dynamic responses of the axially moving
string were simulated in four cases. In the first case, no control is considered, and only the viscous damping of the string
reduces the vibration energy of the axially moving string. In the second case, the boundary control law (24) is applied to
the closed-loop system under the assumption that all parameter values are exactly known and the disturbance is
negligible. Therefore, the control law uses these known values. In the third case, the proposed robust adaptive boundary
control law (59) using the adaptation scheme (61) is simulated. In the fourth case, the unknown boundary disturbance is
considered together with the unknown system parameters. The response of the closed-loop system is accomplished using
the robust boundary control (24) with the adaptation schemes (27) and (28) in order to compensate for the unknown
system parameters and the unknown boundary disturbance.

The system parameters used in the simulations are listed in Table 1. Let the initial conditions of the string be
wðx,0Þ ¼ 0:5sinðpx=lÞ and wt(x,0)=0. The positive values (a and s) and the function b(x) are chosen according to the
inequalities (45)–(47) as follows: a=6.2, s=1, and b(x)=0.1+0.01x. To select the control gains, first, the case of no boundary
disturbance is considered. Using the boundary control force (24) (with m̂dðtÞ ¼ 0), the boundary condition (4) can be
rewritten as

uðtÞþk1wxðl,tÞ�k2wtðl,tÞ ¼ T0wxðl,tÞ, (79)

where

uðtÞ ¼�ðr̂�rÞvðwtðl,tÞþvwxðl,tÞÞ�m̂aðvþ2bðlÞl=aÞwxtðl,tÞ�mawttðl,tÞþðĉa�caÞwtðl,tÞ�k3w3
ðl,tÞ�nðlÞw3

x ðl,tÞ: (80)

It can be assumed that, compared with wx(l,t) and wt(l,t), the function u(t) is very small when ĥðtÞ-h. The boundary
condition (4) can then be approximated as

wxðl,tÞ ¼ �kf wtðl,tÞ, (81)

where kf=k2/(T0�k1). It follows from [8, Section 4.3] that the optimal value of kf should be

kf ¼
ffiffiffiffiffiffiffiffi
T0r

p
(82)

to maximize energy dissipation at the right boundary, where r can be taken from a certain range of r. Therefore, the
control gain k1 can be selected to be close to the value given by Eq. (82). The control gains ki (i=1, 2, 3) in Eq. (24) must
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satisfy the inequalities (40)–(42): k1=993, k2=329, and k3=540. The control gains gi (i=1, 2) are selected according to
Eqs. (62) and (63): g1=1200 and g2=4200. The adaptation gains li (i=1, 2, 3) should be chosen to be large so that the
estimated values converge quickly. It follows from Remark 2 that the leakage gain lr should be small so that V(t) is
ultimately bounded by a small region. Therefore, the adaptation gains are selected as follows: l1=33, l2=40, l3=40, and
lr=1. Following Lemma 3, the initial values for the adaptation scheme (61) should be chosen to be greater than the true
values. The adaptation gain g in Eq. (61) are set to satisfy the inequalities given by Eq. (65): g=10. In the case where the
boundary disturbance is considered, the adaptation gain selected for the estimation of md is ld=30. Other adaptation gains
are maintained as in the case of no boundary disturbance.

Figs. 2–5 show the transverse displacements of the axially moving string at x= l/2 for the four cases mentioned above,
respectively. As seen in Fig. 2 (no control), the axially moving string can be stabilized if the viscous damping is sufficiently
large, but this type of stabilization requires a great amount of time: in our case, it took almost 20 s. As seen in Fig. 3 (with
the exactly known parameter values), the transverse vibrations can be suppressed within one second if the proposed
boundary control with known values is applied. This simulation result is consistent with the theoretical one inferred in
Remark 3, where the exponential stability of the closed-loop system can be achieved with exactly known system
parameter values and the proposed boundary control law (24). However, if the parameter values are unknown, their
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Fig. 2. Transverse displacement of the string at x= l/2 (open loop, without control).
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Fig. 3. Transverse displacement at x= l/2: closed-loop control using (24) with exactly known system parameter values.
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Fig. 4. Transverse displacement at x= l/2: closed-loop control with estimated system parameter values, where boundary disturbance is not considered

(the control performance is slightly inferior to Fig. 3 but generally acceptable when compared with Fig. 2, considering that r, ma, and ca are unknown).
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Fig. 5. Transverse displacement at x= l/2: closed-loop control with estimated system parameter values, where boundary disturbance is considered.
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estimated values, which are obtained by using the adaptation scheme (61), must be used. Therefore, the control
performance will deteriorate, as shown in Fig. 4, where the stabilization is achieved in 3 s. However, the overall control
performance was acceptable compared with that shown in Fig. 2. When the boundary disturbance appears, as shown in
Fig. 5, the robust boundary control (24) provides similar control performance to that shown in the case of no boundary
disturbance, in which the transverse vibration is also suppressed in three seconds. However, asymptotic stabilization is not
achieved because the boundary control (24) and the adaptation law (28) cope only with the bound of the boundary
disturbance. As shown in Fig. 5, the transverse vibration is ultimately bounded by a small value. As shown in Fig. 6(A)–(C),
the convergence of the estimated values to the true values is demonstrated in the case of no boundary disturbance, as the
theoretical proof in Theorem 2.
5. Conclusions

In this paper, a robust adaptive boundary control scheme for suppressing the transverse vibration of a nonlinear axially
moving string with unknown system parameter values and unknown boundary disturbance under spatially varying
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tension was developed. The robust boundary control and adaptation laws were derived using the Lyapunov redesign
method. The three unknown system parameters were the mass per unit length of the axially moving string, the lumped
mass of the hydraulic actuator, and the damping coefficient of the damper. In the case that the system parameter values
were exactly known, the exponential stability of the closed-loop system was achieved. When the system parameter values
were unknown, estimation schemes were used to estimate the unknown values and the adaptive boundary control
achieved uniform asymptotic stability. Moreover, the parameter estimates converged to their true values if the initial
values of the estimates and the adaptation gains were properly selected. When an unknown boundary disturbance and
unknown parameter values were considered together, the robust stability of the closed-loop system was assured in the
sense that all of the signals were uniformly and ultimately bounded. It can be concluded that the proposed robust
boundary control scheme can provide a viable solution to problem of the vibration control of axially moving systems with
unknown system parameters, varying tension, and bounded disturbances.
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Appendix A. Proof of Lemma 2

According to the Fundamental Theorem of Calculus, the following equation holds:

9uðx,tÞ9¼
Z x

0
9usðs,tÞ9ds: (A.1)

By applying the Cauchy-Schwarz inequality (i.e.,
R

hgr(
R

h2) 1/2(
R

g2) 1/2 with h=1, g=9us(s,t)9), the following is obtained:

9uðx,tÞ9r ðxÞ1=2
Z x

0
9usðs,tÞ92

ds

� �1=2

r l1=2

Z l

0
usðs,tÞ


 

2 ds

 !1=2

: (A.2)

Squaring both sides yields

9uðx,tÞ92r l

Z l

0
u2

x ðx,tÞdx: (A.3)

Finally, Eq. (37) is obtained by integrating the last inequality over [0,l].

Appendix B. Proof of Lemma 3

Consider the following equation:

pðtÞ�pd ¼ e�ktpð0Þ�e�ktpdþ

Z t

0
e�kðt�tÞqðtÞdt�pdð1�e�ktÞ

¼ e�ktðpð0Þ�pdÞþ

Z t

0
e�kðt�tÞðqðtÞ�kpdÞdt: (B.1)

The gain k is selected such that

0okrK=pd: (B.2)

The input q(t) is made to satisfy the following inequality:

KZqðtÞZk pd�ðpð0Þ�pdÞe
�ðkþ1Þt : (B.3)

Finally, if

pð0Þ4pd, (B.4)

we obtain the following inequality:

pðtÞ�pdZe�ktðpð0Þ�pdÞþ

Z t

0
e�kðt�tÞ½kpd�ðpð0Þ�pdÞe

�ðkþ1Þt�kpd�dtZ ðpð0Þ�pdÞe
�ðkþ1Þt

Z0 (B.5)

for all tA[0,N). From the conditions (B.2)–(B.4), it is possible to choose k, q(t), and p(0), where k40 and q(t) is bounded as
9q(t)9oK, such that the inequality p(t)�pdZ0 is assured. Then, the proof is complete.

Appendix C. The boundedness of
R1

0 lrh
TK�1ĥðtÞdt

Using the adaptation law (61), we haveZ 1
0

lrh
TK�1ĥðtÞdt










¼ �hTK�1

Z 1
0

_̂hðtÞdtþhT
Z 1

0
ðwtðl,tÞþvwxðl,tÞÞbðlÞl=v
� �

CT
ðtÞdt












¼ hTK�1
ðĥð0Þ�ĥð1ÞÞþrg

Z 1
0
ðwtðl,tÞþvwxðl,tÞÞwtðl,tÞdt






þma

Z 1
0
ðwtðl,tÞþvwxðl,tÞÞ ðbðlÞl=vþaÞwttðl,tÞþvawxtðl,tÞ

� �
dt

þca

Z 1
0
ðwtðl,tÞþvwxðl,tÞÞbðlÞl=v
� �

wtðl,tÞdt






¼ hTK�1

ðĥð0Þ�ĥð1ÞÞþðrgþcabðlÞl=vÞ

Z 1
0

w2
t ðl,tÞdt






þðgvrþbðlÞlcaÞ

Z 1
0

wtðl,tÞwxðl,tÞdt

þðbðlÞl=vþaÞma

Z 1
0

wtðl,tÞwttðl,tÞdt

þvama

Z 1
0

wtðl,tÞwxtðl,tÞdtþv2ama

Z 1
0

wxðl,tÞwxtðl,tÞdt

þðvaþbðlÞlÞma

Z 1
0

wxðl,tÞwttðl,tÞdt





: (C.1)
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It should be noted that

9hTK�1
ðĥð0Þ�ĥð1ÞÞ9o1 (C.2)

when ĥðtÞ is bounded. When all internal signals of the string (w(l,t), wt(l,t), wx(l,t), wtt(l,t), and wxt(l,t)) are bounded, we
conclude that Z 1

0
w2

t ðl,tÞdt










r

Z 1
0

wtðl,tÞ


 

 wtðl,tÞ



 

dtrM1

Z 1
0

wtðl,tÞ


 

dto1, (C.3)

Z 1
0
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r

Z 1
0

wxðl,tÞ


 

 wtðl,tÞ



 

dtoM2

Z 1
0
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dto1, (C.4)

Z 1
0

wtðl,tÞwxtðl,tÞdt










r

Z 1
0
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 wxtðl,tÞ



 

dtrM3

Z 1
0

wtðl,tÞ


 

dto1, (C.5)

Z 1
0

wxðl,tÞwttðl,tÞdt










r

Z 1
0

wxðl,tÞ


 

 wttðl,tÞ



 

dtrM2

Z 1
0

wttðl,tÞ


 

dto1, (C.6)

Z 1
0

wtðl,tÞwttðl,tÞdt










¼ w2

t ðl,tÞ=2 10


 

o1,



 (C.7)

Z 1
0

wxðl,tÞwxtðl,tÞdt










¼ w2

x ðl,tÞ=2 10


 

o1,



 (C.8)

where 9wt(l,t)9rM1, 9wx(l,t)9rM2, and 9wxt(l,t)9rM3. Applying the triangle inequality and utilizing inequalities (C.2)–(C.8)
to Eq. (C.1), it is concluded that Z 1

0
lrh

TK�1ĥðtÞdt










o1: (C.9)

Then, the proof is complete.
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